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A perceptual-components architecture for digital video partitions the image stream into sighal components in a
manner analogous to that used in the human visual system. These components consist of achromatic and opponent
color channels, divided into static and motion channels, further divided into bands of particular spatial frequency
and orientation. Bits are allocated to an individual band in accord with visual sensitivity to that band and in accord
with the properties of visual masking. This architecture is argued to have desirable features such as efficiency, error
tolerance, scalability, device independence, and extensibility.

INTRODUCTION

At this time there i3 great interest in new and extended
standards and architectures for electronic transmission of
visual information. These include extensions of conven-
tional analog broadcast TV (HDTYV), digital packet-
switched video, and so-called open architecture T'V.! Pack-
et video is a scheme in which the video signal is digitized and
broken down into small (100-1000 bits) packets for trans-
miggion over an asynchronous packet-switched network.
An excellent introduction to the current status of the subject
is available in a recent. journal special issue.? The principal
virtues of packet video are that (1) it permits integration of
diverse information sources {video, speech, data}, (2) it ex-
ploits the variable-bit-rate network to provide constant
quality, despite the bursty nature of video signals, and (3) it
permits simple multiplexing of multiple video sources,
which in turn yields improved channel utilization and trans-
mission efficiency.

Whatever the details of its implementation, packet video
will require that the image stream be coded in an efficient
and robust manner. The purpose of this paper is to argue
that this code should be designed to match the perceptual
apparatus of the human viewer, because this approach leads
naturally to desirable attributes such as efficiency, error
tolerance, scalability, extensibility, and device indepen-
dence.

The plan of the paper is as follows. I begin with a descrip-
tion of a general method of coding the image stream in a
manner that mimics the coding employed in the early stages
of the human visual system. I call this a perceptual-compo-
nents architecture (PCA). In the second section I describe
the advantages of a PCA in a packet-video environment.
This paper does not describe a completed project bhut rather
suggests a profitable direction for further research and de-
velopment.

PERCEPTUAL-COMPONENTS ARCHITECTURE

While the deeper mysteries of human vision remain un-
solved, two centuries of research have yielded a picture, in
some detail, of the early stages of the visual process. In
recent years the picture has undoubtedly been clarified by
the concurrent development of computer and imaging tech-

nology. These kinds of technology have provided meta-
phors, mathematics, and algorithms with which to under-
stand and describe biological vision. Consequently much of
early vision can be cast in signal-processing terms, such as
filtering, sampling, and coding. More specifically, early vi-
sion has been characterized asg a branching stream, in which
separate modules divert from the common flood the infor-
mation of their specific concern, such as color, motion, and
shape. This partition of information into separate compo-
nents is key to the signal architecture described bhelow. 1
begin by specifying some useful terminology. 1 then pro-
pose a partition of the visual signal into various components.
Each aspect of the partition is motivated by a brief review of
relevant evidence. My purpose is to illustrate the general
features of this architecture rather than to recommend de-
tailed specifications.

Terminology

I characterize video input and output as a digital image
stream, a(x, ¥, £, ¢), where the indices refer to space, time,
and color. For this discussion we ignore the analog process-
es of capture and display. The input is teo be coded, packed,
transmitted, received, unpacked, and decoded into an out-
put stream. We are concerned primarily with the design of
the code, although this cannot be entirely divorced from the
issues of categorization into packets. The goal is to code the
image stream in an efficient and robust manner. The gener-
al type of coding proposed here is usually called transform
coding. A linear transform is applied to the image, yielding
a set of coefficients, describing the amplitudes of the trans-
form hasis functions. The coefficients are quantized and
subjected to some lossless coding. At the receiver, each step
is inverted.

The linear transform that we consider here can be viewed
as a set of transforms, each of which consists of a filtering
and a subsampling operation. Each individual transform is
associated with a filter, which selects a particular band, or
region of the spatiotemporal frequency domain, and a par-
ticular direction in the trivariant color space. Each filter is
associated with an image component, which 1s its inverse
Fourier transform and which represents the elementary sig-
nal selected by the filter. Each coefficient, when inverse
guantized and inverse transformed (rendered), will result in
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Fig. 1. Spectral responses of three opponent color channels as
described by Guth et al.” The PCA first partitions the image
stream into three comparable chromatic bands.

the addition of a suitably amplified and displaced compo-
nent to the output stream. For purposes of exposition, a
group of bands that share some aspect may be referred to as
a channel.

Color

The current model of human visual color processing begins
with image capture by three distinct cone types, colloquially
denoted R, G, and B. The cone signal may be computed by a
linear transformation from monitor or camera primaries, r,
g, and b. Capture (and some adaptive gain control) is fol-
lowed by a linear transformation into a so-called opponent
scheme® ® comprising an achromatic channel, a channel rep-
resenting red—green differences, and a channel representing
yellow-blue differences. To a first approximation, these
channels may be computedasR + G,R - G,and R + G — B.
We do not attempt here to specify the precise color direc-
tions of these three channels but note that this is an area of
intense activity.®1® Figure 1 illustrates the spectral re-
sponse functions for one current opponent model.” Accord-
ingly, in the PCA the first partition of the image stream is
into three opponent chromatic channels, which we designate
achromatic (A), red~green (RG), and yellow—blue (YB). For
the moment, we treat this partition as separable from the
spatial and temporal content of the signal, but as we shall see
these three bands undergo rather different subsequent pro-
cessing.

Space
The cones perform a spatial sampling of the image, and at
the retina and the lateral geniculate nucleus these samples
are transformed by a difference-of-Gaussians type of opera-
tor, which appears to serve primarily in adaptive gain con-
trol, signal decorrelation, and multiplexing of chromatic
channels.!! At the level of the primary visual cortex, elec-
trophysiological measurements show that individual cells
are tuned for specific bands of spatial frequency and orienta-
tion.'? 19 Likewise many psychophysical results are consis-
tent with the existence of channels selective along these
dimensions.?0 26

In primate visual cortex, individual neurons have an aver-
age spatial frequency bandwidth of ~1.4 octaves, and an
orientation bandwidth of ~40 deg,!3%7 suggesting perhaps
four to eight frequency bands and approximately as many
orientation bands.

In the PCA the spatial frequency dimension is subdivided
into a number of bands of spatial frequency or resolution.
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These are depicted in Fig. 2 by circular concentric bands in
the two-dimensional spatial frequency domain. The width
of each band (difference between inner and outer diameters)
is proportional to its center frequency (midpoint between
inner and outer diameters). This reflects the approximately
constant logarithmic bandwidth of cortical neurons and also
corresponds to a self-similarity among the resolution bands.

Each resolution band is further divided into oriented com-
ponents, represented by the wedge-shaped regions separat-
ed by straight lines in Fig. 2. Since the spatial image is real,
each frequency-orientation band actually consists of a pair
of segments on either side of the origin. As noted above, to
each band there corresponds an image component, which
may be regarded as the elementary signals into which the
image stream is decomposed. An example component cor-
responding to one of the bands in Fig. 2 is pictured in Fig. 3.
It has a certain spatial frequency and orientation and is
localized in both space and frequency.

I emphasize that these illustrations are only schematics of
the partition of the image stream into perceptual compo-
nents. The illustration in Fig. 2, for example, does not show
that spectral bands of the various components may overlap
and that their borders may be gradual rather than sharp.
Many aspects of the partition, such as the precise width,
number, and shape of resolution and orientation bands, are
subjects for research and debate.

Since we intend that the PCA be device independent, we
must specify a unit for the spatial dimension that is indepen-
dent of device-specific quantities such as pixels and picture
heights. A unit such as centimeters is unsatisfactory be-
cause, independently of viewing distance, it cannot be relat-
ed to human visual acuity. The unit adopted in the PCA is
degrees of visual angle. This has the drawback that, in order

N

u

Fig. 2. Subdivision of spatial frequency domain in a PCA. The
axes are horizontal (1) and vertical (v) spatial frequency. Orienta-
tion (¢) is given by angle relative to the u axis.
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Fig.3. Elementary spatial componentina PCA. Thisexampleisa
Gabor function (the product of a sinusoid and a Gaussian) with 1-
octave bandwidth. Its frequency spectrum is shown at the right.
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Separable spatiotemporal band

Rightward motion band

Fig. 4. Comparison of separable spatictemporal band and motion
band. Ineach figure the diagonatl line indicates the spectrum of an
image in rightward motion with unit velocity. The velocity is equal
to the slope of the line in this frequency diagram. Separable real
components (left} would occupy all four shaded regions, whereas an
inseparable motion component (right) occupies only two of the four
regions. The axes represent temporal frequency (w) and one spatial
frequency dimension (ie).

actually to render the image, one must assume a particular
viewing distance from the display surface. But a design
viewing distance is always implicit in displays designed for
human viewing.

Time

There is considerable psychophysical evidence for two sepa-
rate visual channels selective for low and high temporal
frequencies.”® 31 These have often been called sustained
and transient, on account of their differing impulse respons-
es, but [ will call them static and motion channels. These
channels are probably related to the so-called M and P
pathways in the primate retina, geniculate, and cortex, but
this has yet to be established with confidence.?

Applying this notion to the PCA, we divide the image
stream into high- and low-pass temporal bands. The low-
pass band represents the essentially stationary components
of the stream, while the high-pass band represents moving
elements, whence the names static and motion channels.

Space and Time (Motion)

When one is using real components, there are essentially two
ways to represent a band of spatiotemporal frequency (Fig.
4). In one, separable space-time signals (standing waves)
are used, whereas in the other, inseparable motion signals
(traveling waves) are used. Various psychophysical and
electrophysiological results suggest that, for the high-pass
temporal channel, the visual system uses direction-selective
filters and therefore codes inseparable motion sig-
nalg. #7408 135-96  Gpecific forms for these human motion fil-
ters have been proposed.’? 1%

In accord with these observations, in the PCA each band
in the motion channel consists of a pair of regions arranged
diametrically about the spatiotemporal frequency origin.
An example is pictured in Fig. 5. The space-time compo-
nent to which the region in this example corresponds is a
small patch of sinusoid oriented and moving at an angle of 45
deg.

Tt is well established that the human chserver is insensi-
tive to high spatiotemporal frequencies.® This may be a
consequence of the low-pass temporal character of the par-
vocellular-driven cortical pathways.*? For this reason, in
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our architecture the motion channel containg only low to
medium spatial resolution bands. The notion that video
codes may discard high spatiotemporal components has a
considerable history'»1¢ and is part of the justification for
the use of interlacing in current video standards. However,
it has also been argued that the smooth-pursuit eye move-
ments that track moving images reduce this advantage.1”.48
However, in those experiments, the entire image moved pre-
dictably, making tracking almost certain, so further studies
with more natural sequences are warranted.

Space and Color

Although there is debate about precisely how to quantify the
difference, there is general agreement that spatial resclution
is markedly lower in the chromatic channels than in the
achromatic channel #*-6 Thig fact is of course exploited in
current TV broadcast systems. In the PCA it permits us to
omit the uppermost spatial resolution bands from the two
chromatic channels.

Space, Time, and Color

There is also evidence that the chromatic pathways contrib-
ute little to the motion sense.”® Likewise, chromatic tempo-
ral sensitivity is considerably lower than achromatic.”?
Consequently we omit the motion channel from the two
chromatic channels, RG and YB.

An additional difference between achromatic and chro-
matic channels is in the treatment of low-pass components.
Achromatic sensitivity declines markedly at low spatial and
temporal frequencies,’ whereas chromatic sensitivity re-
mains high./4%457 Tt may therefore be possible to discard
the static spatially low-pass achromatic component alto-
gether, whereas the component must be retained in the chro-
matic channels. However, the information needed to repre-
sent the static spatial low-pass component is small, and it
may be essential to images with intense low apatial frequen-
cies; so, unless there is a need, it may be wiser to preserve
that component.

10
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Fig. 5. Single motion band. T'he line connecting the two lohes is
only a visual guide. The axes indicate spatial frequencies (i and )
in cycles/degree and temporal frequency () in hertz.
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Summary

The PCA partition of the image stream into spatial, tempo-
ral, and chromatic bands is summarized in Fig. 6. Each
panel is a representation of the spatiotemporal frequency
domain for one opponent color channel. Only the positive
half of the temporal frequency domain is shown, since for
real signals the negative half is redundant. Each spheroid
represents a particular band. Together the bands make up
something like a wedding cake, which may be divided into
layers (static versus motion), slices (various orientations),
and concentric rings {various resolutions or spatial frequen-
cies).

Several features of the PCA introduced in the previous
subsections are evident in this figure. First, only the achro-
matic channel contains a motion channel, or second layer to
the cake. Second, this motion layer does not extend to as
high spatial frequencies as does the static layer. Third, both
red-green and vellow—blue channels contain only lower-res-
olution bands.

We have not spelled outl the precise algorithm needed to
implement this architecture, and we note that there are
many technical challenges in the design of efficient imple-
mentation. The general scheme proposed, however, is con-
sistent with recent developments in image coding. First we
note the development of pyramid image codes,” % which
subdivide the image by resolution and subsample each band
in proportion to resolution. More recently, oriented pyra-
mids have been developed, and several of these codes have
been designed as analogs to image coding in human visual
cortex.®! 6 The transforms used in these codes are quite
gimilar to the finite prolate-spheroidal wave forms explored
by Wilson®” and Wilson and Spann® and to the wavelet
codes studied by Mallat.® Subband codes, an area of in-
tense activity, are a close relative of pyramid and wavelet
codes, which use quadrature mirror filter techniques to en-
sure lossless coding.™7!" Typical subband codes differ from
the proposed architecture in that they employ three bands:
horizontal, vertical, and diagonals. The diagonal band con-
tains components at two orthogonal orientations. The more
recently devised hexagonal subband codegt! 52046072 gre
more in keeping with the PCA. The subband concept has
also been extended to the time dimension,™ and a number
of authors have explored the use of subband codes in packet
video, 770

Sampling

Because the PCA outlined above adheres to the general form
of hierarchical, subband, or pyramid coding, it is amenable
to the sampling principles employed in those techniques.
Typically sampling is proportional to two-dimensional
bandwidth for spatial imagery or to three-dimensional
bandwidth for an image stream. The total number of sam-
ples (coefficients) in the code of a given segment of the
stream should be near the number of pixels in the input. In
the example pictured in Fig. 6, with three resolution bands
each an octave wide, spatial samples would be 16 times more
numerous in the highest-resolution band than in the lowest.
Likewise each motion band, which we envision as having
twice the temporal bandwidth of the static band, would
contain twice as many samples as the static band at the
corresponding spatial frequency.
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Fig. 6. Subdivision of spatial, temporal, and chromatic domains in
the PCA. The axes are labeled in hertz (w) and cycles/degree (1 and
w). Each panel is for a separate chromatic channel.
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Quantization

In traditional image coding, bit allocation is typically based
on a constraint such as minimization of rms error. In the
PCA, bit allocation is based on the visibility of quantization
errors. 'This has two consequences. The first is that quan-
tization levels are allocated to a particular band in propor-
tion to visual sensitivity to that band. In particular, fewer
levels are required for high spatial frequencies than for low.
The precise number of levels required for the motion and
chromatic bands can also be predicted with some accuracy
from the literature on vigual sensitivity, but the most accu-
rate measures would be obtained for signals closely matched
to the individual components.

The second consequence is that visual masking, wherein
quantization errors become less visible when superimposed
upon large signals, calls for the use of a nonuniform quantiz-
er. An example of how visual sensitivity can be used direct-
ly to construct a quantizer that in principle eliminates visi-
ble quantization errors is pictured in Fig. 7.7%77 In general,
such a quantizer will allocate fewer levels to larger transform
coefficient values.

Such a quantizer can have a large effect on the number of
required levels. The masking exponent (w in Fig. 7) de-
scribes the power-law rise in detectable contrast increment
as a function of component contrast. Figure 8 shows how
various masking exponents yield various numbers of levels.
A typical value of the exponent derived from psychophysical
experiment is 0.7, which in this example yields 11 levels,
compared with 101 required for a uniform quantizer.

Unknowns
Although the broad outline of a PCA is clear, there are many
questions that remain to be answered. Among these we note
the following: What are the contrast thresholds in the vari-
ous bands? What are the masking exponents in various
bands? What are the spatial bandwidths of each band?7®
Do they vary between static and motion channels™ or be-
tween achromatic and chromatic channels? What is the
orientation bandwidth of each band?™#° Does it vary be-
tween static and motion channels®! or between achromatic
and chromatic channels?¥ %1 What are the temporal band-
widths of static and motion channels?%% What are the
precise directions in color space of the three chromatic chan-
nelg?s 10

Apart from the quantization process, the architecture de-
scribed above is essentially linear. There are, however, a
number of strong nonlinearities in early vision that may
provide profitable opportunities for additional compression.
These include adaptation to local mean luminance, contrast
adaptation,’® cross-orientation inhibition,?# and contrast
gain control® or contrast normalization.®

There are in addition many questions regarding the spe-
cific implementation of a PCA, such as the design of efficient
filters and sampling patterns, lossless coding algorithms,
and schemes for categorization into packets. Finally, the
ultimate value of this approach must be assessed by evalua-
tien of complete prototype systems.

An Example
As an example of a scheme that comes close to the spatial
and chromatic subdivision illusirated in Fig. 6, I briefly
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Fig.7. Design of a perceptually lossless quantizer. The heavy line
deseribes the just-detectable increment in the contrast of a compo-
nent at a function of the contrast of the component: (e, ¢, w) = ¢
Max|[1, (¢/t}*], where ¢ is component contrast, ¢ is contrast thresh-
old, and w is the masking exponent. Here contrasts are expressed in
units of t, and the masking exponent is 0.7. To ensure that quanti-
zation errors are invisible, successive thresholds and levels are
placed at the corners of abuting triangles whose height (and base)
equals the permissible quantization error. See Ref. 77 for more
details,
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Fig.8. Number of quantization levels as a function of the masking
exponent w. In this example, the input range is {0, 100}, and the
threshold is 1. The case of exponent = 0 corregponds to a uniform
quantizer, which in this example would require 101 levels.

describe the hexagonal orthogonal pyramid (HOP) trans-
form 526465 Figure 9 shows a set of seven transform kernels.
Each high-pass kernel (outer ring in Fig. 9) corresponds to
oneg of the bands in the outermost ring of Fig. 2 or 6. Each
kernel is applied to each nonoverlapping hexagonal neigh-
borhood of seven image pixels on a hexagonal image raster,
yielding one coefficient per neighborhood per kernel. Thus
each kernel effectively subsamples the image by a factor of 7
(in two dimensions). The center, low-pass, kernel in Fig. 9
generates an image that is again subdivided by reapplication
of the seven kernels, to generate the next-lower-resolution
set of bands, The process is repeated to a desired number of
levels. This particular code ig lossless, and each individual
component is orthogonal to all others. The number of coef-
ficients is equal to the number of input pixels.

The original {r, g, b} image is linearly transformed to an
opponent color space {A, RG, YB}, and the HOP transform is
applied separately to each band. The nonuniform quantiz-
er described above is applied separately to each resolution
band in each chromatic image. The contrast threshold pa-
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Fig. 9. Transform kernels for the HOP transform. The seven
orthogonal kernels consist of three edge detectors, three bar detec-
tors, and a blob detector.

rameter of this quantizer is adjusted to minimize bit rate
while retaining acceptable visual quality. Each chromatic
channel is then inverse HOP transformed, and inverse color
transformed. Plate I shows the three separate chromatic
channels and the combined results. The hit rates for the
three bands are 0.86, 0,041, and 0.054; and for the complete
image, (.96 bit/pixel.

ADVANTAGES OF A PERCEPTUAL-
COMPONENTS ARCHITECTURE

Compression

“ompression of the image stream is an essential feature of
packet video. Without any form of compression, digital
transmission of broadcast quality video would require a bit
rate of the order of 175 Mbits/sec (512 pixels X 480 lines X 30
frames X 8 bits X 3 colorg), excluding any packet overhead.

It is well known that certain components of the image
signal convey little information to the observer, either be-
cause little information is present or because the observer is
insensitive to those components. These components should
clearly be transmitted at a lower bit rate, with lower priority,
ornot at all. Examples are high spatiotemporal frequencies
and high spatiochromatic frequencies. Again, separation
into perceptual components makes this information triage a
relatively simple matter.

Perceptual components coding has shown promise in com-
pressing static monochrome and color images,»62,65,66,77.01,62
Perceptually lossless coding is approached at bit rates of
approximately 1 bit/pixel for color images, representing a
compression factor of 24 relative to uncompressed video.
This figure approaches that of more established techniques,
and, given the preliminary nature of this work, it is likely
that this figure can be substantially improved.

Motion

Motion is arguably the most challenging aspect of coding
and rendering the image stream hecause it generally leads to
a high and variable bit rate. However, in those portions of
the image that lack motion, successive frames are highly
correlated, and the bit rate is low. In portions in which
motion does occur, there is a high correlation between ap-
propriately offset frames. Schemes such as conditional re-
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plenishment and motion compensation have been devised to
exploit these redundancies.* 95

As part of a PCA, motion components provide several
advantages. First, they provide a form of automatic motion
compensation. The coefficients in the motion band, when
rendered into the output stream, are themselves moving
image components. Thus, rather than displacing large
blocks of the image, as is conventionally done, with typical
problems at block borders, this technigque moves elementary
visual components in a smooth and continuous way.

Second, motion components provide a form of conditional
replenishment. While the image is in motion, the static
bands are silent, and only half of the motion bands are active
(those within 90 deg of the direction of metion). Because
motion bands are absent from the two chromatic channels,
as well as at the higher spatial frequencies of the achromatic
channel, motion components can be conveyed with few coef-
ficients and consequently a low bit rate. When the image is
stationary, motion channels are silent. The static channels
are active, but, because they are quite low pass in time,
samples are infrequent, and again a low bit rate results. A
still lower bit rate can be obtained if coefficients are trans-
mitted only when they change.

Perceptual-components coding has not yet been applied
to the temporal dimension. But, given the considerable
temporal redundancy of video imagety, it is likely to provide
a large amount of additicnal compression over that obtained
with static images. Subband coding has been applied in the
time domain, with apparent success, but published results
do not quantify the advantage gained.™’* As noted above,
PCA uses motion components, whereas subband coding
typically uses separable space—time components (Fig. 5).
When separable space—time components are used, the hand
mixes two opposing directions, only one of which typically
containg useful information. Thus T suspect that use of
motion components will provide better compression than
will the use of separable components.

It has long been argued that moving scenes do not require
high spatial resolution, and that stationary scenes do not
require high temporal resolution, and that this permits
bandwidth reduction, 5465697 Thijg feature is implemented
in the PCA in the absence of high-spatial-frequency bands in
the motion channel. Furthermore each static hand has half
the bandwidth of the motion band at the same resolution
and orientation, and there are twice as many motion bands
as static bands at a given resolution (each static band has
orientation but no direction), so that at a given resolution
motion bands require four times as many samples,

A further virtue of the segregation of static and motion
components is that only static components are required in
the two chromatic channels, as discussed further below.

Celor Coding

The PCA partitions the image stream into three channels:
luminance or white-black (WB), red—green (RG), and yel-
low—blue (YB). It is widely appreciated that chromatic in-
formation is coded at much lower resolution than the lumi-
nance information, and indeed this is the basis for the band-
width allocations of luminance and color signals in
conventional broadcast TV. Image coding experiments
show the remarkable difference in bit-rate requirements of
luminance and color. The example in Plate I shows that an
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Plate 1. Reconstructions of three individual chromatic channels
and combined image. Colors in RG and YB images [(c) and (d)] are
not precisely calibrated and have been intensified for clarity.
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image coded with the HOP transform requires 0.86 bit/pixel
for the achromatic channel and only an additional 0.095 bit/
pixel for the full-color image. Note that the color image
requires only ~11% more bits. It is clear that efficient
coding of the image stream must exploit this feature, and
this can be done by means of a PCA.

A second argument for segregation of achromatic and
chromatic signals is that in the human visual system the
latter appear to contribute little to perception of motion,
This suggests that chromatic components at high temporal
frequencies (motion sighals) need not be included in the
PCA or, if included, require only modest bandwidth. Thisis
illustrated in Fig. 6, wherein Figs. 6(b) and 6(¢), depicting
chromatic components, lack the second layer of the cake
corresponding to motion signals.

Error Tolerance

Packet networks are characterized by the possibility of
packetloss. In abroadcast context, there is no possibility of
retransmigsion.’* Tt is therefore important that the loss of a
single random packet produce only small diminution in
quality. Unlike for recursive or block-organized codes, er-
rors or omissions in perceptual codes do not propagate and
tend to be visually benign.”” This is presumably due to the
essentially linear decomposition of the image into compo-
nents of approximately equat visibility and to the residual
redundancy in the components. Furthermore, errors are
confined to the band in question and to the locations corre-
sponding to the lost components. As noted above, loss of
some components is more injurious than loss of others (e.g.,
low-resolution static bands), but these components tend to
he those with the lowest bil rate, suggesting the option of
additional error-correction coding or deliberately injected
redundancy.

Scalability
Beyond the case of random packet loss, there is also the
possibility of a more systematic triage of the packet stream.
This may arise because of network overload or because the
user or the provider, for reasons of cost, selects less than
complete delivery of information. The bit allocations dis-
cussed above are based on visibility of errors and are de-
signed to maintain near-perfect (perceptually lossless)
trangmigssion. To allow for a graded delivery of information
the architecture should permit simple segregation of signals
into various priority levels, This idea has been presented
elsewhere in terms of “guaranteed packets” and “enhance-
ment packets,” “droppable” and “nondroppable” bits,*
and “most significant” and “least significant parts.”!®

The advantage of perceptual coding in this context is that
it divides the image sequence into components of known (or
knowable) perceptual significance. In the prototype
scheme described above, low spatial frequencies are argu-
ably more important than high, low temporal frequencies
are more important than high, and luminance information is
more important than chromatic information. These valua-
tions are of course dependent on the user and are more
difficult when we compare across dimensions (high temporal
frequencies versus chromatic information), but the percep-
tual components nevertheless allow these valuations to be
made on perceptually meaningful dimensions.

It should also be noted that various other services, such as
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transmission of still images, progressive transmission, and
transmission of miniaturized versions of a video stream (for
browsing or channel selection), are also accommodated as
scaled transmissions.

Device Independence

Many of the advantages of a device-independent video stan-
dard have been described hy Lippman.! An important as-
pect of device independence is resolution independence.
The lack of such independence is the basis for much of the
incompatibility among the existing broadcast standards and
proposed HDTYV standards. The systems differ in line,
pixel, and frame rates. While digital schemes in general
permit conversion from any standard to any other standard,
provided that the information is there, the computation
involved may be prohibitive.

The PCA ig attractive in this respect in that it allows for
simple rendering into an arbitrary resolution format. There
are two reasons for this. The first is that the components
are specified in device-independent dimensions. For exam-
ple, a given spatial resolution band is specified in cycles/
degree. It is the responsibility of the rendering engine to
ensure that the component has the proper dimensions on the
final display, based on a particular design viewing distance,
The second reason is that, because the perceptual compo-
nents are easily represented in the frequency domain, they
allow for a particularly simple method of decimation and
interpolation. In effect, the components are assembled in a
frequency-domain buffer that is padded or clipped before
inverse transformation, 06477

Extensihility

Existing broadcast T'V is based on a number of incompatible
regional standards (NTSC, PAL, SECAM). Much of the
current debate about HDTV centers on what new standard
to adopt. The reason that a new standard is necessary, and
that the debate on its form is so heated, is that neither old
nor new proposed standards are easily or fully extensible.
The concept of an extensible standard is that it permits
additions and improvements. The perceptual components
architecture is extensible in two important ways.

First, because the components are specified in a device-
independent way, additional components can be added at
any time. For example, additional resolution may be added
by including higher-reselution bands. Additional field of
view may be added by including more samples within each
band. If the receiver is incapable of rendering this informa-
tion, the information is ighored.

This extensibility permits the quality of service to im-
prove in a graded fashion (this is also an aspect of scalability
discussed above). As coding algorithms and channel band-
widths improve, suppliers may add quality to the broadcast.
Customers willing to pay for the additional quality will pur-
chase receivers capable of rendering the additional compo-
nents, and perhaps they will pay a higher fee for the premi-
um service. Butno abrupt change in the transmission stan-
dards will be required.

The second extensibility of the PCA is the following. ‘The
perceptual components that have been described are those
characteristic of the early stages in the human coding of the
image stream. As vision science progresses, the later stages
will be revealed. These later siages are likely to address a
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more chject-oriented rather than pixel-oriented representa-
tion. There ig reagson to believe that this higher-level coding
will provide still more powerful leverage for compression of
the image stream. It is therefore important that the archi-
tecture accommodate these higher-level components. The
device independence of the PCA satisfies this requirement.
Although the emphasis here is on transmission of imagery,
it should be noted that the notion of a device-independent
image description language can also handle graphics ele-
ments. Thus the image rendering engine might also be
capable of graphics rendering.

CONCLUSION

I have sketched the outlines of a perceptual-components
architecture for digital video and have attempted to show
how this architecture will yield desirable attributes such as
efficiency, error tolerance, scalability, device independence,
and extensibility. Many of the ideas in the PCA are not
new, and they have been implemented in partial form in
existing T'V systems or image coding systems. What is new
is the principle of adopting human visual coding as the
model in all aspects of the architecture. This radical pro-
posal must no doubt be moderated by practical consider-
ations, but the digital aspect of future video provides a great
freedom in which to achieve thig ideal.
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